Call for Papers  

Article Details


The Plasma microRNA miR-1914* and -1915 Suppresses Chemoresistant in Colorectal Cancer Patients by Down-regulating NFIX.

[ Vol. 16 , Issue. 1 ]

Author(s):

J. Hu, G. Cai, Y. Xu and S. Cai   Pages 70 - 82 ( 13 )

Abstract:


Objective: We investigated mechanisms of colorectal cancer (CRC) chemoresistance to first-line chemotherapy (capecitabine plus oxaliplatin (XELOX)) and identified two putative chemoresistant microRNAs, miR-1914* and -1915, that are downregulated in plasma samples from patients with chemoresistant CRC. </p> <p> Methods: A number of plasma samples from CRC patients were analyzed for the levels of miR-1914* and - 1915. Effects of stable and transient expression of 2 microRNAs in human chemoresistant CRC cell lines were analyzed. Tumor formation and chemoresistance in HCT116/5-Fu/OXA that did or did not express 2 microRNAs were analyzed in mice. Nuclear factor I/X (NFIX) was predicted to target the gene of 2 miRNAs and verified in vivo and in vitro. </p> <p> Results: Plasma levels of miR-1914* and -1915 in chemoresistant CRC patients were different than levels in responders, and associated with clinical response. Overexpression of miR-1914* and -1915 in chemoresistant CRC cells reduced resistance to 5-FU and Oxaliplatin in vitro. The microRNAs suppressed chemoresistance in CRC tumors in mice by affecting cell growth, invasion, apoptosis and tumor suppressor function. miR-1914* and -1915 interacted with the 3’-untranslated region of NFIX and reduced NFIX its level in chemoresistant CRC cells. Overexpression of NFIX did not inhibit chemoresistant CRC cell motility and chemoresistant proteins when miR-1914* and -1915 were transfected. </p> <p> Conclusion: Plasma miR-1914* and -1915 interact with NFIX RNA and reduce its level in chemoresistant CRC cells to first-line chemotherapy. Up-regulation of miR-1914* and -1915 decreased the chemoresistance abilities of chemoresistant CRC cells. The plasma miR-1914* and -1915 may play a role in colorectal cancer therapy and diagnosis. </p>

Keywords:

Colorectal cancer, chemotherapy resistance, non-coding RNA, plasma.

Affiliation:

Department of Colorectal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.



Read Full-Text article