Submit Manuscript  

Article Details

Mechanisms of Protein Misfolding in Conformational Lung Diseases

[ Vol. 12 , Issue. 7 ]


N. G. McElvaney and C. M. Greene   Pages 850 - 859 ( 10 )


Genetic or environmentally-induced alterations in protein structure interfere with the correct folding, assembly and trafficking of proteins. In the lung the expression of misfolded proteins can induce a variety of pathogenetic effects. Cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency are two major clinically relevant pulmonary disorders associated with protein misfolding. Both are genetic diseases the primary causes of which are expression of mutant alleles of the cystic fibrosis transmembrane conductance regulator (CFTR) and SERPINA1, respectively. The most common and best studied mutant forms of CFTR and AAT are ΔF508 CFTR and the Glu342Lys mutant of AAT called ZAAT, respectively. Non-genetic mechanisms can also damage protein structure and induce protein misfolding in the lung. Cigarette-smoke contains oxidants and other factors that can modify a protein’s structure, and is one of the most significant environmental causes of protein damage within the lung. Herein we describe the mechanisms controlling the folding of wild type and mutant versions of CFTR and AAT proteins, and explore the consequences of cigarette-smoke-induced effects on the protein folding machinery in the lung.


Alpha-1 antitrypsin, cigarette smoke, cystic fibrosis transmembrane conductance regulator, endoplasmic reticulum stress, protein folding, proteostasis, conformation, aggregates, protein expression, hereditary disorders, protein synthesis, folding enzymes, unfolded protein response, airway stress diseases, autophagy


Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.

Read Full-Text article